4.7 Principles of Controlling Flooding

References

- a) NSTM 079 Volume 1
- b) NTTP 3-20.31
- c) Damage Control Book, section II (a)
- d) OPNAV P-03C-01-89, Cold Weather Handbook for Surface Ships

Enabling Objectives

- Flooding Effects / Liquid Loading Diagrams
- Damage Control Book Specifics
- Weight / Moment Compensation
- Case Studies
- Stability Report
- Procedures to Control Flooding

Intact Stability with Ice

- Conditions Conducive to Icing
- Ship Ballasting Plan for Topside Icing
- Outboard Profile View showing ice accumulations

Notice 12" of ice accumulation on hull...

WEIGHT AND MOMENT COMPENSATION PROGRAM

- Status I: No displacement or Stability problems
- Status II: Deficient in both margins
- Status III: Deficient in KG margin
- Status IV: Deficient in displacement margin

"Intentionally Left Blank"

"Intentionally Left Blank"

LIMITATIONS

- Follow Liquid Loading Instructions
- No Abnormal Topside Weights
- Don't Submerge Limiting Draft Marks
- Maintain Watertight Integrity

LIMITATIONS

- Follow Liquid Loading Instructions
- No Abnormal Topside Weights
- Don't Submerge Limiting Draft Marks
- Maintain Watertight Integrity

LIMITATIONS

- Follow Liquid Loading Instructions
- No Abnormal Topside Weights
- Don't Submerge Limiting Draft Marks
- Maintain Watertight Integrity

DID NOT FOLLOW LIQUID LOADING INSTRUCTIONS PRIOR TO ONLOAD...

- Standard Unwritten "Tradition" of trimming 4–8 feet bow–down prior to UNREP
- During UNREP ballasted bow–down by <u>eight</u> feet.
- During SAR ops, fwd weather deck was continuously covered with two feet of water

- During SAR ops: Draft fwd = >38 feet
 Draft aft = 30 feet
- DC Book States:
 - 1. "Trim > one foot by the bow may decrease Stability."
 - 2. "Limiting draft of 35 feet shall not be exceeded at bow or stern."

- Ship's Policy: No formal trim reports to CO after ballasting or deballasting
- Ship not retrimmed until 10 hours after UNREP secured

DAMAGE: \$200K when main deck caved in due to weight of topside water

Liquid Loading Lessons AOR-1 Class

Liquid Loading Lessons AOR-1 Class

- Ammunition download and refueling of CV
- Ballasting of AOR–1 not conducted soon enough – excessive rolling
- Drafts after download / refueling: Fwd: 22 ft
 AP
 MP
 Aft: 34 ft

Liquid Loading Lessons AOR-1 Class

- Ship's hull in severe hogging and trim condition
- DC Book permits: "...no more than 3.7 ft difference between the bow and stern."
- Ship's policy was not to ballast cargo tanks unless a "serious" (undefined) condition existed.

DAMAGE: \$600K of ordnance lost over the side because of excessive rolling.

- Destroyer Tender completing ROH scheduled to conduct sea trials
- Full speed / full rudder turn required to test steering gear
- Anticipated return to shipyard following sea trials

- LIQUID LOAD: Diesel Fuel 23 % Potable Water 86 % Feed Water 98 %
- DRAFTS:

Fwd:	15' 3"
Aft:	23' 2"
Trim:	7' 11" by stern

 DISPLACEMENT: Lightship 13,400 LT At incident 16,300 LT Min OP Cond 18,400 LT

- Ship speed: 20+ KTS
- Wind: NW 30–35 KTS, Gusts to 40 KTS
- Waves: 3–6 FT
- Anticipated heel < 20 degrees at full rudder

- OOD requested permission to notify crew of impending rolls
- CO: "Let's see what shakes loose."
- Heeled 15 20 degrees, paused then rolled to 30 - 35 degrees
- Righted slowly to 5 8 degree list

- 27 Personnel injuries 4 MEDEVAC
- Cabinets and Safes
- Medical tables
- Weights/ compressed air cylinders
- Piping systems

- Damage Control Book
- Flooding Effects / Liquid Loading Diagrams
- Weight / Moment Compensation
- Case Studies
- Stability Report
- Procedures to Control Flooding

Prior to damage, sit down with CO and discuss:

- Ship's danger angle
- Floodable Length
- Negative GM
- Dynamic Stability

(Iron out what information CO wants after damage) NSTM 079V1, Rev 1 Page 16-6.

STABILITY / DAMAGE REPORT

- COMPARTMENT NAME
- CASUALTY
- LOCATION
- LEVEL OF FLOODING
- FLOODING EFFECTS CHART INFORMATION: Is Stability Impaired or Improved?
- RECOMMENDATIONS OR CURRENT ACTION
- EXPECTED LOSSES OF SHIP SERVICES:

FIRE PLUGS	AUX COOLING
DRAINAGE	CMWD
MAG SPRINKLERS	AFFF

- Damage Control Book
- Flooding Effects / Liquid Loading Diagrams
- Weight / Moment Compensation
- Case Studies
- Stability Report
- Procedures to Control Flooding

NOW, in compt 5-250-0-E

there is a report of flooding

3 feet and rising, all hands man

your general emergency stations!

This is not a drill.

Procedures After Damage

STEP ONE -

ESTABLISH FLOODING BOUNDARIES

CANN, TEDFORD H.

Rank and organization: Seaman, U.S. Navy. Born: 3 September 1897, Bridgeport, Conn. Accredited to: New York. G.O. No.: 366, 1918.

Citation: For courageous conduct while serving on board the U.S.S. May, 5 November 1917. Cann found a leak in a flooded compartment and closed it at the peril of his life, thereby *unquestionably saving the ship*.

Procedures After Damage

STEP TWO -

DEWATER ANY SPACE COLORED **PINK** ON THE FLOODING EFFECTS DIAGRAM.

(GREEN) - FLOODING OF GREEN SPACES WILL IMPROVE STABILITY, EVEN THOUGH FREE SURFACE EXISTS.

(YELLOW) - FLOODING OF YELLOW SPACES WILL IMPROVE STABILITY IF NO FREE SURFACE EXISTS. IF SPACE IS NOT 100% FULL STABILITY WILL BE IMPAIRED.

(PINK) - FLOODING OF PINK SPACES WILL DECREASE STABILITY BECAUSE OF ADDED HIGH WEIGHT, FREE SURFACE EFFECT OR BOTH.

(WHITE) - FLOODING OF WHITE SPACES HAS NO APPRECIABLE EFFECT ON STABILITY.

COMPARTMENT NUMBER

CAPACITY-TONS SW

INCLINING MOMENTS FT-T

STEP THREE -

SIZE UP THE SITUATION TO DETERMINE WHETHER STABILITY IS CRITICAL BEFORE ANY FURTHER ACTION IS TAKEN.

REVIEW OF CRITICAL STABILITY

1. Negative GM

2. Listing to danger angle

3. Floodable length exceeded

4. Damage with bad weather

STEP FOUR -ELIMINATE OR REDUCE LIST

But, its not quite that easy... Knowing the rate of flooding is helpful in two ways:

- Determine if ship's dewatering capabilities can keep up with the flooding.
- 2. Determine time before the space is flooded solid.

"Do I send in a dewatering team ...?"

Determine Rate of Flooding Use Table 15, 079 vol 2, page 124

If not a hole, determine area of crack: $48 \text{ in } \times 1 \text{ in } = 48 \text{ in}^2$

Divide area by 3.14 (or just 3): 48 / 3 = 16 in²

Take square root of number: $X^2 = 16$ in² so X = 4 in

This number is half the diameter: Use the 8 inch hole

Estimate depth of hole/crack below waterline: 10 FT

Determine rate of flooding: **3,974 gpm**

Ship Dewatering Capacity, Section II(c)

Ship Class	Main Drainage	P100 @250gpm	Sub Pump @200gpm		Total Dewatering
AE	5000	5	5		7,250
AO	1000	3	3		2,350
ARS	600	3	2		1,750
CG	700	5	8		3,550
CVN	6000	7	16		10,950
DD	1250	4	6		3,450
DDG	1250	4	6		2,950
FFG	250	3	6		2,200
LHA	6600	5	14		10,650
LHD	1500	6	20		7,000
LPD	600	5	3		2,450
LSD	1000	5	5		3,250
MCM	300	3	2		1,450
MHC	300	2	2		1,200
				Salvage Pump	
USCG		P100		@180gpm	
210'	150	3	3	2	1,780
270'	500	3	4	2	2,330
378'	600	3	4	2	2,430

Determine Time for Space FS

Previous Example was **3,974 gpm** incoming

From Plate 2 compartment "capacity" is : 894 LT

 $1 \text{ FT}^3 = 7.48 \text{ GAL } \& 1 \text{ LT} = 35 \text{ FT}^3$

OR 1 LT per 261.8 GAL

 $\frac{1 \text{ LT}}{261.8 \text{ CAL}} \times \frac{\text{RATE OF FLOODING GAL}}{\text{MIN}} = \frac{15.2 \text{ LT}}{\text{MIN}}$

Take the capacity and divide by your answer:

894 $LT \times \frac{1 \text{ MIN}}{15.2 \text{ LT}} = 58 \text{ MINUTES TO FLOOD SOLID!!}$

Summary...

- Liquid Loading Diagram & Flooding Effects Diagram.
- Icing conditions and predictions/removal
- Weight Moment Compensation Program
- DC Book Limitations (4 Limitations)
- Procedures after damage (4 Steps)
 Critical Stability (4 Thumb rules)

Quiz...

•What is the FIRST step in procedures AFTER damage?

Why is a permanent LIST always bad for stability?

• Righting Arms GZ will always be reduced due to G being off centerline.

Instructor will now...

- Assign Homework for lesson 4.7 (Stability Problems #12, #13)
- Read Student Guide, start reviewing EXAM Formula Sheet!!