Shielding effects on radiation intensity and dose

Lesson topic 5.1

Enabling Objectives

- Describe how time, distance, and shielding effect radiation intensity and dose
- Describe the characteristics of the types of nuclear bursts
- *Describe* the characteristics of alpha, beta, gamma, and neutron radiation

Enabling Objectives

- Describe the following nuclear terms: fireball, Electromagnetic pulse, initial radiation, thermal radiation, shockwave, blast wave, column/plume, base surge, residual radiation, fallout, and radioactive cloud
- C Describe the following nuclear terms: radiation, contamination, radioactive half life, dose, dose rate, roentgen, RAD, cintigray, and REM

Nuclear Terms

#Radiation

Rays/particles emitted from an unstable atom

#Contamination

Deposit of radioactive material on surfaces

Radioactive half-life

Time required for the intensity of a given isotope to decrease to half of its original value

Nuclear Terms

∺Dose

Total amount of radiation received by a person <u>regardless</u> of time

Hose rate

Amount of radiation received in a <u>unit of time</u>

Roentgen

△Measurement of gamma or x-ray radiation

- Designated "R"
- Dose Rate = R/hr

Nuclear Terms

Radiation Absorbed Dose (RAD)

△ A unit of absorbed dose of radiation

∺Centigray (cGy)

► NATO designation for RAD

REM - Unit of biological dose of radiation

For radiological calculations, all terms (Roentgen, RAD, Centigray) are a 1 for 1 ratio 10r/hr = 10 RADS per hr

Factors Influencing radiation intensity/dose

<mark>∺ Time</mark>

- Shorter the exposure time, the smaller the dose received
- Dose = Intensity x Time

#Distance

➢ Farther the distance from the radiation source, the smaller the dose received

Factors Influencing radiation intensity/dose

Shielding

Material that absorbs radiation, decreases radiation intensity
 Thickness & type of material influences amount of radiation absorbed

Types of radiation

XAIpha particles

△Travels 0 to 3 inches in the air

△Low penetrating ability

Shielding

Paper will completely stop the particle
Personnel hazard internal

KNuclear defense importance: low

Types of radiation

Beta particles

□ Travel 6 to 10 feet in the air

△Low penetrating ability

Shielding

Aluminum foil sheet

Protective clothing

Beta particles

#Personnel hazard

- Skin burns
- ☐ Internal problems

Xuclear defense importance

- Moderate importance
- △Travels moderately far

Types of radiation

#Gamma rays

△Travels long distances

☐ High penetrating ability

Shielding

☐High density material

Rersonnel hazard external & internal

Penetrates deep into body tissue

High penetrating ability & distance traveled

Types of radiation

Keutron radiation

Travels long distances
 Penetrating ability depends on shielding
 Shielding - Hydrogenous material
 Lead & steel not effective shields

Neutron radiation

#Personnel hazard

- Cells because of their high water content
- Can induce an atom in the body to become unstable/radioactive
- Mostly external because it travels thousands of yards in air

%Nuclear defense importance

Only in the first minute or so of a nuclear burst

#Fireball

Material present is heated to tens of millions degrees and forms a hot glowing mass

#Initial radiation

- △ Radiation emitted during the first minute after a nuclear explosion
- #Electromagnetic Pulse (EMP)
 - △A sharp pulse of radio frequency electromagnetic radiation
 - Causes Blueout & blackout

#Thermal radiation

- △Travels at the speed of light
- Temperature reaches tens of millions of degrees (C) and the rate of energy emission is very high.

Very prominent characteristic of a nuclear explosion

¥Visible Light

- Some of the thermal energy in a nuclear explosion is in the form of visible light
- Burst produces an extremely bright initial flash
- Do not look at the fireball, Permanent eye injury can result

Shock wave

Shock wave

#Extremely high temperature and pressure
#Traveling through air is called a blast wave, or air blast
#The pressure is several million pounds per

square inch (psi)

#Column or plume

Hollow cylinder of water & spray thrown up from an underwater burst

 Dense aerosol cloud of small water droplets forms and moves rapidly outward in all directions from surface (or ground)
 Highly radioactive

#Residual radiation

- △Radiological decay after the burst
- Radioactive contamination that is created in a nuclear explosion

∺Fall out

Radioactive particles that fall back to earth
Early fallout is of tactical military significance

Types of Nuclear Bursts

MITSUGI KISHIDA

HIGH ALTITUDE AIR BURST

OVER 100,000 FEET PRIMARILY USED FOR PRODUCTION OF ELECTROMAGNETIC EFFECTS

 \bigcirc

FIREBALL TOUCHES THE SURFACE OF THE EARTH. Maximizes blast and thermal effects against ships/structures covers less area than air burst

FIREBALL VENTS TO THE WATER SURFACE. EFFECTS: Underwater shock wave, blueout, and base surge.

Summary and Review

#Nuclear terms **#**Factors influencing radiation intensity/dose **#**Types of radiation **#**Nuclear weapon burst terms **#**Types of nuclear bursts